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The dynamic response of a rotating shaft subject to an axially, constant-velocity, moving
and rotating load is investigated. The dynamic behaviour of future, high-speed linear
bearings is studied. Shafts used in linear bearing applications are typically slender.
Therefore, Rayleigh beam theory is used to model the rotating shaft. Modal analysis and
integral transformation methods are employed to develop analytical expressions for the
transient response of a shaft with simply supported boundary conditions. Numerical results
are presented, discussed and compared with some available solutions. As shown in the
paper, by changing model parameters, it is possible to describe dynamic behaviour of
di!erent types of linear bearings and other mechanical elements.
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1. INTRODUCTION

The problem of a rotating shaft subject to an axially moving load was "rst introduced in
reference [1]. It is a combined problem using methods from the "eld of rotor dynamics
[2, 3] and from studies of structures subject to moving loads [4]. The original concern
about the problem was related to the study of future high-speed machining operations.
Since then, several papers have been published studying various aspects of the basic
problem of a rotating shaft subject to moving load. Following the "rst paper, the study in
reference [15] presented a generalized modal analysis method and the Galerkin method
which were used to investigate the Rayleigh and Timosenko beam models of the shaft.
Argento and Scott [6] have studied the problem of accelerating distributed surface load and
in a later paper [7] they have extended this study using the Galerkin method to "nd the
response of various types of load velocity pro"les and shaft boundary conditions. Huang
and Chen [8] studied the response of a spinning orthotropic beam subjected to a moving
harmonic load using a Euler}Bernoulli model in a rotating system of co-ordinates. Huang
and Hsu [9] have investigated the resonant phenomena of a rotating cylindrical shell
subjected to a harmonic moving load. Zu and Han [10] have solved analytically the
challenging problem of a spinning Timoshenko beam subject to a moving load with general
boundary conditions. In a chapter about distributed parameter rotor-bearing systems, Lee
[11] describes in detail the use of a modal analysis method for analyzing rotors and includes
the case of moving load problem. Lee [12] investigated the problem of an axial load acting
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on the shaft in addition to the moving load. Most researchers who have studied the problem
have shown great interest in the analytical problem and in the methods of solution,
although possible applications of the study were hardly ever mentioned.

The study in this paper has two goals. The "rst is to study the dynamic response of
a rotating shaft subject to moving and rotating loads. The second goal is to show that the
model may describe design problems related to future high-speed moving machine elements
and especially some linear bearing elements. There is an attempt to address both issues, to
present an analytical solution of a novel problem in dynamics and to search for a new "eld
of future applications where this solution may be used. The paper presents general
analytical expressions for the dynamic de#ections of a rotating shaft subject to axially
moving and rotating loads. This type of moving load application has not been studied
previously for either stationary or rotating shafts. As shown in the paper, the relations
between the axial and the rotational speeds of the load and the load speed parameter a,
a!ect the dynamic de#ections of the shaft.

In the design of modern machines there is a continuous trend to reduce the size or weight
of the parts, to increase relative velocities and accelerations between moving parts and to
increase accuracy while operating in a noisy environment. Those generic requirements force
designers to choose and to calculate carefully each machine element. The above-mentioned
requirements will become even harder in the future due to growing competition in the
markets. The examples described in the paper are from the "eld of linear motion elements,
which are widely used in the design of machine tools, robotics, electro-mechanical devices
and memory drives. The linear motion elements are designed and built as high precision
devices. Those devices should be accurate under static or dynamic conditions. Some
manufacturer's catalogues suggest a guide for correct design. For example, in order to
choose a &&rotary spline screw'', the designer should validate that the applied rotational
speed of the machine will be lower than 80% of the fundamental natural frequency. As can
be seen, the manufacturer suggests using the device as a sub-critical system. Once the
rotational and axial speeds increase, one should calculate the system more precisely. The
rotating shaft, which is subjected to a moving and rotating load, is expected to have
de#ection ampli"cation which indicates inaccuracy of the bearing. When accuracy is
measured in micro-metres and the relative velocity of the applied loads is signi"cant,
dynamic insight into the problem is required.

2. EQUATIONS OF MOTION

The general model of a rotating beam subject to a moving load was derived in references
[1] and [13] and will not be repeated here. The Rayleigh beam model is used to describe the
problem, since the shafts used in linear bearing designs are typically slender. The model
includes the gyroscopic model terms and the moment terms due to the inertia of rotation of
cross-sections. Unlike in the Timoshenko beam model, here the shear deformation terms
are neglected. Some additional simplifying assumptions are used to analyze the transient
response of a shaft subject to an axially moving and rotating load, as shown in Figure 1.
The study is limited to the case of a uniform and balanced shaft with a circular cross-section,
which is simply supported and rotating at constant speed (u). It is further assumed that the
shaft is not subjected to axial forces. The applied force P (z, t) is of constant magnitude, and
moves with a constant axial velocity (v) along the shaft axis OX

1
. The load also rotates at

a constant velocity p (t) that may be positive i.e., in the same direction as the rotation of the
shaft, or negative in a direction which is opposite to the shaft direction of rotation, as shown
in Figure 2. The load remains parallel to the OX

1
X

2
plane.



Figure 1. Moving and rotating load.

Figure 2. System of co-ordinates.
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Using complex notation, the equation of motion is
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where the load and the de#ection terms are
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Equation (1) is equivalent to a set of two coupled equations in the OX
1
X

3
and OX

2
X

3
directions. The coupling is due to the gyroscopic term. The well-known boundary
conditions and initial conditions for a simply supported beam are used here.

3. RESPONSE TO AXIALLY MOVING AND ROTATING LOAD

In this Section the response to an axially moving and rotating load is presented for the
Rayleigh beam model. The transient response for the time period 0(t((l/v) is considered,
which is the time required for the load to traverse the shaft. The response of the rotating
shaft is presented in an inertial system of co-ordinates. In some literature the "nite integral
transformation method was used as a convenient method for solving the Rayleigh beam
model [4]. The method of modal analysis is introduced here in order to provide a better
physical insight into the problem. The method of solution used in this paper is hybrid. It
applies both modal analysis and "nite integral transformation methods to obtain analytical
expressions for the de#ections under the moving load. A more general treatment of modal
analysis for analyzing the response of rotating shafts subject to moving loads may be found
in reference [1].

In order to help the reader a brief reminder of the method of the solution of the
homogeneous equation shown in references [1] and [11] is repeated here.

Consider the homogeneous part of equation (1) and assume the solution is

; (z, t)"
=
+
n/1

/
n
(z)g
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(t)"
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+
n/1
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n
expAi Jq

n

z
lB exp(iu

n
t), (4)

where uN
n
is the complex amplitude, q

n
characterizes the mode shapes and u

n
are the natural

frequencies. Substituting equation (4) into the homogeneous part of equation (1) gives
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The solution of equation (6) leads to the general equation of the eigenvalues. Here, for
a simply supported shaft, one may use without loss of generality the simple form
eigenfunction,

/
n
(z)"sin

nn
l

z (7)

The corresponding natural frequencies are determined from equations (5) and (7) and are
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where the Rayleigh coe$cient and the Euler}Bernoulli natural frequency of the shaft are
given by
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Solving equation (8) gives
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Here it is important to note that two natural frequencies exist, one (u
n1

) always being
positive (forward precession) and the other (u

n2
) negative (backward precession),

corresponding to a single eigenfunction. Boundary conditions other than those simply
supported should be treated di!erently [5].

Multiplying equation (5) by /
m

and integrating over the length of the shaft, using the
boundary conditions and integrating by parts results in

!u2
n
H

nm
#u

n
¸
nm
#K

nm
"0, (11)

where

H
nm
"

oAl

2
(1#b2

n
)d

nm
, ¸

nm
"oAlXb2

n
d
nm

, (12, 13)

K
nm
"

EIl

2 A
nn
l B

4
d
nm

. (14)
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nm

is the Kronecker delta function. In equation (11), the case mOn becomes a trivial one.
For m"n, equation (11) becomes
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Equation (15) also implicitly indicates that two natural frequencies exist corresponding to
a single mode u

n1
and u

n2
. The orthogonality condition for the eigenvalues are stated in

equation (11) and in the following relations:
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3.1. THE GENERAL CASE pOX

The analytical expression that describes the transient response of the rotating shaft
subject to an axially moving and rotating load, is one goal of our study. Therefore, the next
step is to solve the non-homogeneous equation (1). Introducing equation (11) in
equation (6), multiplying by /

m
, integrating over the length of the shaft, and using the

relations in equation (16) gives
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Equation (17) describes an in"nite set of ordinary di!erential equations. Upon solving for
g
n
(t), the complex generalized co-ordinate, the total de#ection, given in a complex form, is

obtained by using equation (4). Considering a moving load of the form of equation (2),
equation (17) gives
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Applying the Laplace transformation method equation (18) can be solved:
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It is important to notice that r
1

and r
2

are frequencies which describe the moving and
rotating load. Each of them is a combination of h

n
which is the frequency that represents the

axial motion of the load, and p which is the angular frequency of the load rotation. The
frequency p is positive when the load is rotating in the same direction as the shaft.

The expression for g
n

can be written in the form
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The inverse Laplace transform, upon noting that the poles are simple, and using the residue
theorem, is found to be
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The response, given in complex form, is
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=
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To obtain the response in the OX
1

and OX
2

directions (;
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2

respectively) the
following transformations are used:
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The expressions for the de#ections under the moving load are
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Equations (25) and (26) represent a general solution of the de#ections of a simply supported
rotating shaft due to the combined motion of a load which is rotating and axially moving at
high velocities. As expected in this case, signi"cant de#ections are seen in both directions
OX

1
and OX

2
. Since the length of the shaft is "nal, it is interesting to explore the behaviour

of the shaft under di!erent parameters.
This model may be directly applied to evaluate the future high-speed rotary spline screw

(RSS) that is described in Figure 3. The RSS is a machine element that has three degrees of
freedom. It enables the rotation of the spline shaft on a couple of angular end bearings at (X)
[rad/s]. The linear ball screw may perform an axial linear motion (l) (m/s) relative to the
moving shaft. The load is applied to the external ring that is mounted on a radial bearing
and enables rotation in the positive and negative directions (p) (rad/s) according to the
design requirements. In this case the linear and rotational motions of the load are
independent. The RSS is a high precision element currently used to build machine tools,
robots or medical devices.

Figure 4 describes a rotating ball spline (RBS). It is a two-degree-of-freedom element
where both ends of the spline are circular and enable the rotation of the spline shaft on
a couple of angular end bearings at (X) (rad/s). The load, applied at the outer ring of the
axial bearing is forced to move axially relative to the shaft while rotating with the spline
shaft. Here the motion of the load as seen from the inertial system of co-ordinates is
dependent on (X) the rotational velocity of the shaft and on (v) the axial velocity. These two



Figure 3. Rotary spline screw (RSS).

Figure 4. Rotating ball spline (RBS).
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parameters determine loads' &&pitch length''. For constant rotational velocity of the shaft, the
higher the axial velocity of the load the larger the &&pitch length''.

Figure 5 describes a leading screw (LS). It is a single-degree-of-freedom machine element.
The load is applied to the screw externally. It moves axially and rotates at the same time
according to the screw pitch equation. This machine element is widely used in many
applications of machine design.

The demand for higher operational speeds and better accuracy is the natural trend of the
industry, due to the competition on the market. The model presented may be useful in
analyzing and achieving improved requirements for various linear motion devices.



Figure 5. Leading screw (LS).
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Consider next some special cases, which are derived from the general study. Some models
may represent di!erent machine elements.

3.2. ROTATING SHAFT, RESONANCE CONDITIONS (u
n1
"!r

2
)

The natural forward and backward frequencies of the shaft are dependent on its
rotational velocity (X), on the Rayleigh beam coe$cient (b

n
) and on shaft properties. There

are two frequencies that describe the nature of the applied load. (h
n
) which represents its

axial velocity and (p) which represents its rotation. r
1

and r
2

are two frequencies which
represent the combined behaviour of the load.

As may be observed, there are four possible resonance frequencies:
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n1
"!r

2
is more

likely to occur. This case is presented here, as an example, in order to show the nature of the
resonance equations. It is a case that mathematically involves a double pole solution. Only
the "nal expressions are presented here.
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where
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The terms t cos(u
n2

t) and t sin(u
n2

t) are growing linearly with time. For this study of the
transient response of a high-speed load traversing a "nite length shaft, the de#ection of the
shaft remains bounded. Similar expressions may be derived for all other resonance cases.

3.3. ROTATING SHAFT SUBJECTED TO NON-ROTATING MOVING LOAD (p"0)

This is the case of a rotating shaft subject to an axially moving load. Here, since p"0,
r
1
"r

2
"h

n
. Inserting these values into equations (25) and (26) gives the expressions

developed in reference [1]. It is important to mention again that a load that is moving
axially on the shaft in one inertial plane say, OX

1
X

3
creates de#ection not only in this

plane, but also in the perpendicular direction OX
2
, due to the coupling gyroscopic e!ect.

3.4. STATIONARY SHAFT SUBJECTED TO MOVING AND ROTATING LOAD

This is a case of a non-rotating shaft subject to an axially moving and a rotating load. By
substituting u

n1
"!u
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into equations (25) and (26), gives the expressions for shaft

de#ection in both directions:

;
1
(z, t)"

=
+
n/1

P

oAl

1

(1#b2
n
)

1

u
n
(u2

n
!r2

1
) (u2

n
!r2

2
)
M![(u2

n
!r2

2
)r

1
#(u2

n
!r2

1
)r

2
]

]sinu
n
t#u

n
(u2

n
!r2

2
) sin r

1
t#u

n
(u2

n
!r2

1
) sin r

2
tN sinA

nn
l Bz, (28)

;
2
(z, t)"

=
+
n/1

P

oAl

1

(1#b2
n
)

1

(u2
n
!r2

1
) (u2

n
!r2

2
)
]M(r

1
!r

2
) cosu

n
t!u

n
(u2

n
!r2

2
) cos r

1
t

#(u2
n
!r2

1
) cos r

2
tN sin(nn/l)z. (29)

Equations (28) and (29) have been also derived directly using the Euler}Bernoulli beam
model for a rotating (or non-rotating) shaft using equation (30).
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Except for the term 1/(1#b2
n
) which is related to the Rayleigh coe$cient, equations (28)

and (29) are identical for both cases.
Equation (30) and the solutions given in equations (28) and (29) may resemble the results

of a classical study by Timoshenko which is mentioned in reference [4]. The study was
related to the problem of a moving steam locomotive on a large-span railway bridge. The
two-cylinder steam locomotive has driving wheels provided with unbalanced
counterweights, the right hand being placed 903 against the left hand. As a result of this
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unusual loading nature, the mathematical model of the bridge subjected to the moving
locomotive with an unbalanced sinusoidal load is naturally close to our model. Although
the mathematical model is quite close, it is describing two totally di!erent physical
phenomena.

The case of stationary shaft subjected to a moving and rotating load is an important
result from the practical point of view. It enables any leading screw (LS) and a stationary
rotary spline screw (RSS) to be modelled and analyzed in a simple form. For the leading
screw (LS) the relation between the axial velocity (v) and its rotational velocity (p) are
dependent on the screw pitch equation. For a rotary spline screw (RSS) with a stationary
shaft, the axial and rotational motions of the load are independent.

3.5. STATIONARY SHAFT SUBJECTED TO AXIALLY MOVING LOAD

This case represents an axially moving load on a stationary shaft. By substituting
u

n1
"!u

n2
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n
and p"0 into equations (25) and (26) they converge to the well-known

expressions [4]
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These equations may represent a load moving on any linear ball spline with a stationary,
non-rotating shaft or on any other linear bearing device which is simply supported.
Figure 6. Directions of the rotating load along the shaft (k
p
"1).

TABLE 1

Nominal values of the
parameters in the simulation

Parameter Value

l 1 (m)
E 206 (GPa)
o 7700 (Kg/m2)
b 0)02
X 1)0
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4. NUMERICAL EXAMPLES AND DISCUSSION

4.1. EXAMPLE 1*DYNAMIC DEFLECTION OF A ROTATING SHAFT UNDER AN AXIALLY

MOVING AND ROTATING LOAD

Future families of linear motion products will face new demands: higher speeds of
motion, higher precision and reduced weight and price. The challenge of meeting these
demands requires a better understanding of the problem and improved analysis tools.

The example to be studied here may represent a commercial rotating ball spline (RBS).
The typical dimensions and material properties shown here can be found in a catalogue.

In the study a set of non-dimensional parameters are used. The normalized de#ections
under the moving load ;

1
/;

s
and ;

2
/;

s
are calculated along the shaft. In order to use the

terminology of references [4] and [1] the value of a*the speed ratio (v/v
cr
) is "rst de"ned.

Since v
cr

is shaft property, a de"nes the load velocity v. Next k
p
is chosen, which represents

the number of rotations that the load completes while traversing at velocity (v) along the
shaft length (l). Once v and k

p
are known, p the frequency of rotation of the moving load is

prescribed using equation (32). In addition b is de"ned as the Rayleigh beam coe$cient and
X as the non-dimensional speed of the shaft. The dynamic response of a shaft subjected to
a non-rotating moving load as a function of varying parameters has been investigated in
previous papers [1, 5]. In this paper some special phenomena which are related to the
rotation of the moving load traversing a rotating shaft are to be investigated.
Figure 7. Dynamic de#ections of a rotating shaft under moving and rotating load (k
p
"1, a"0)5).
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The rotational velocity of the load is related to the linear velocity of the load through the
pitch equation

p"k
p
(2nv/l), (32)

k
p
"l/l

p
and is the ratio between the length of the shaft and the &&load pitch length'' (l

p
) as

shown in Figure 1.
In order to get results that are comparable, any single rotation of the load relative to the

inertial set of co-ordinates is divided into four quarters.
The parameters used to investigate the problem are given in Table 1.
The numerical convergence of the series is very good, being proportional to 1/n4. For all

cases presented here n"10 was used and proved su$cient.
In order to get some insight into the problem consider k

p
"1 which means that the load

will complete one full rotation while traversing the shaft given a"0)5. The position of the
load at the end of each quarter of the shaft is described in Figure 6. The results of the
normalized non-dimensional de#ections of the shaft under the moving load are shown in
Figure 7. Observing Figures 6 and 7, one may see that the load is directed in the positive
direction of X

1
at both ends of the shaft and is directed in the negative direction of X

1
at the

middle of the shaft. The load is directed towards the positive direction of X
2

in the "rst
quarter of the shaft and towards the negative direction in the third quarter. This explains
why the maximal de#ection;

2
/;

s
of the shaft is built up "rst in the positive direction of X

2
and changes signs towards its end. It also becomes clear why the de#ection ;

1
/;

s
achieves
Figure 8. Dynamic de#ections of a rotating shaft under moving and rotating load (a"0)5; *, k
p
"0)01; s,

k
p
"0)5; q, k

p
"1; f, k

p
"2; £, k

p
"5).
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its maximum in the negative direction of X
1

and why it lags behind the maximal peak of
;
2
/;

s
. Both maximal peaks of ;

1
/;

s
and ;

2
/;

s
are greater than one, which means that

there is some ampli"cation of the shaft de#ection relative to the static de#ection.
Figure 8 shows shaft de#ections ;

1
/;

s
and ;

2
/;

s
for a"0)5 and "ve di!erent values of

k
p
. The value k

p
"0)01 is describing a load which is moving almost without any rotation

directed towards the positive direction of X
1
. It is close to the case studied in paper [1]. It

results in a highest de#ection ratio of about 1)6 in the X
1
direction. In the X

2
direction there

is a small de#ection term related to the gyroscopic coupling e!ect of the rotating shaft. For
k
p
"5 the load is rotating "ve times while traversing the shaft. It may be seen that the

maximal de#ections of the shaft under the moving load become smaller in both directions
(less than 0)3).

Figure 9 describes shaft de#ection when the value of a"1)1. It means higher axial
velocity of the load v, and as a result, for each value of k

p
also higher rotational speed of the

load. It may be observed in Figure 9 that for all cases ;/;
s
(1.

It should be noticed that in the case of a leading screw, the load pitch length (l
p
) is equal to

the screw pitch and therefore it is a single-degree-of-freedom system. In practice the pitch is
much smaller than the shaft length, which means for k

p
'10,;/;

s
@1. It means that there is

a small de#ection (and stress) of the shaft and when the load rotates it is highly constrained
to a small pitch length. This phenomenon may be explained by the &&averaging'' e!ect due to
the &&dense'' rotation of the load. Figure 10 shows results of shaft de#ections for a"0)5 and
for k

p
"20. Maximal values of the de#ections in both directions are less than 0)02.
Figure 9. Dynamic de#ections of a rotating shaft under moving and rotating load (a"1)1; **, k
p
"0)01; s,

k
p
"0)5; q, k

p
"1; f, k

p
"2; £, k

p
"5).



Figure 10. Dynamic de#ections of a rotating shaft under moving and rotating load (k
p
"20, a"0)5).
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4.2. EXAMPLE 2*DYNAMIC DEFLECTION AT MID-SPAN OF A STATIONARY SHAFT SUBJECT

TO AN AXIALLY MOVING AND ROTATING LOAD

In this example the behaviour of a stationary shaft subject to axially moving and rotating
load that may be described as &&helical'' motion of the load is studied. The study may
represent several types of linear bearings. The numerical values of the material and the
length of the shaft are as in Table 1. In order to compare the dynamic response of a rotating
and non-rotating load; the de#ection at mid-span is studied. Figures 11}13 presents the
results of the dynamic de#ection at mid-span of the shaft at the time interval t"l/v, for
di!erent values of load speed parameter a. For a non-rotating load (k

p
"0), which is only

axially moving along the shaft, the results are similar to those presented in reference [4].
Figure 11 is plotted for load speed a"0)5. It is observed that the dynamic de#ection

ampli"cation is signi"cant in both the ;
1

and ;
2

directions for values below k
p
"1 or as

long as the load rotates less than one full rotation while traversing the shaft length. As k
p

increases the de#ection of the shaft is decreasing in both directions. For k
p
"5 the

maximum dynamic de#ection at mid-span is only 0)1;
s
, or 10% of the static de#ection of

a simply supported beam subject to a load at mid-span location.
Figure 12 present results for higher load speed, a"1. Here, as expected, the dynamic

ampli"cation is lower than for a"0)5. Figure 6 shows that at the initial point (l"0), the
load is pointing in the ;

1
direction. This initial position of the load of course a!ects the

calculated de#ection components in both the;
1

and;
2

directions. To clarify this point the
curves for k

p
"0)5 in Figure 12 will be examined. In this case the load rotates only 1803



Figure 11. Dynamic de#ection at mid-span of stationary shaft subject to a moving and rotating load; (l/2, t)/;
s
,

for load speed a"0)5 (a"0)5; *, k
p
"0; s, k

p
"0)5; q, k

p
"1; f, k

p
"2; £, k

p
"5).
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while traversing the length of the shaft. Therefore, when the load reaches mid-span location,
it is pointing in the ;

2
direction. It explains why the maximum value of ;

2
/;

s
is about 1)3,

while in the other direction the value of ;
1
/;

s
is only 0)45.

Figure 13 presents results for a load speed of a"2. Due to the high axial speed of the
load, all dynamic de#ections at mid-span become smaller than the static de#ection at
mid-span ;

1
/;

s
(1. As the values of k

p
increase, the dynamic response of the shaft

decreases.
The dynamic de#ections of an axially moving, non-rotating load, on a stationary

shaft are only in the ;
1

direction, in the plane of its motion. The rotation of the moving
load on a stationary shaft creates de#ections in both the ;

1
and ;

2
directions. The

dynamic de#ections of an axially moving, non-rotating load, on a rotating shaft have
components both in the ;

1
and ;

2
directions, due to the gyroscopic e!ect, as shown in

example 1.

5. SUMMARY AND CONCLUSION

The paper presents the dynamic response of a rotating shaft with simply supported
boundary conditions subject to moving and rotating load. In a previous paper [1], the
e!ects of various parameters of a rotating shaft subject to an axially moving load were
studied. The general solution shown here enables the e!ect of the combined axial and



Figure 12. Dynamic de#ection at mid-span of stationary shaft subject to a moving and rotating load
;(l/2, t)/;

s
, for load speed a"1)0 (a"1)0; *, k

p
"0; s, k

p
"0)5; q, k

p
"1; f, k

p
"2; £, k

p
"5).
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rotational motion of the load to be studied. The present study may be signi"cant in the
dynamic analysis of future high-speed and high-precision linear bearings and other
mechanical elements. Most papers shown in the references mentioned only future
high-speed metal cutting as the motivation for their study.

Based on the investigation presented in the paper it can be concluded that:

1. The dynamic response of a rotating shaft subject to an axially moving and rotating load
represents a family of dynamic problems, which are related to future high-speed and
high-accuracy mechanical elements. The ability to analyze analytically
a three-degrees-of-freedom motion (X, v, p) may apply to some other high-speed
mechanism design in the future.

2. The dynamic de#ection of a rotating shaft which is subject to the prescribed loads has
components in both directions (;

1
and ;

2
) due to the rotating load and due to the

gyroscopic coupling.
3. For values of k

p
less than one, i.e., when the load is rotating slowly while moving quickly

in the axial direction, there is signi"cant dynamic de#ection (and stress) ampli"cation of
the shaft up to 60% when k

p
"0)01 and a"0)5. For the same value of a, if k

p
'2, i.e.,

the load is making at least two rotations while traversing the shaft, there is an
attenuation of the de#ection.

4. The de#ection components of the shaft ;
1

and ;
2

decrease as the load pitch length l
p

decreases (equivalent to increasing values of k
p
).



Figure 13. Dynamic de#ection at mid-span of stationary shaft subject to a moving and rotating load
;(l/2, t)/;

s
, for load speed a"2)0 (a"2)0; *, k

p
"0; s, k

p
"0)5; q, k

p
"1; f, k

p
"2; £, k

p
"5).
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5. The dynamic de#ections of an axially moving, non-rotating load, on a stationary shaft
are only in the;

1
direction, in the plane of load motion. The rotation of the moving load

on a stationary shaft creates de#ections in both the ;
1

and ;
2

directions.
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